Search results for "Détection d'objets en Mouvement"
showing 1 items of 1 documents
Semantic Analysis of the Driving Environment in Urban Scenarios
2021
Understanding urban scenes require recognizing the semantic constituents of a scene and the complex interactions between them. In this work, we explore and provide effective representations for understanding urban scenes based on in situ perception, which can be helpful for planning and decision-making in various complex urban environments and under a variety of environmental conditions. We first present a taxonomy of deep learning methods in the area of semantic segmentation, the most studied topic in the literature for understanding urban driving scenes. The methods are categorized based on their architectural structure and further elaborated with a discussion of their advantages, possibl…